Understanding SAR ADCs: their architecture and comparison with other ADCs - AN1080

ثبت نشده
چکیده

Successive-approximation-register (SAR) analog-to-digital converters (ADCs) represent the majority of the ADC market for mediumto high-resolution ADCs. SAR ADCs provide up to 5Msps sampling rates with resolutions from 8 to 18 bits. The SAR architecture allows for high-performance, low-power ADCs to be packaged in small form factors for today's demanding applications. This paper will explain how the SAR ADC operates by using a binary search algorithm to converge on the input signal. It also explains the heart of the SAR ADC, the capacitive DAC, and the high-speed comparator. Finally, the article will contrast the SAR architecture with pipeline, flash, and sigma-delta ADCs. Introduction Successive-approximation-register (SAR) analog-to-digital converters (ADCs) are frequently the architecture of choice for mediumto-high-resolution applications with sample rates under 5 megasamples per second (Msps). Resolution for SAR ADCs most commonly ranges from 8 to 16 bits, and they provide low power consumption as well as a small form factor. This combination of features makes these ADCs ideal for a wide variety of applications, such as portable/battery-powered instruments, pen digitizers, industrial controls, and data/signal acquisition. As the name implies, the SAR ADC basically implements a binary search algorithm. Therefore, while the internal circuitry may be running at several megahertz (MHz), the ADC sample rate is a fraction of that number due to the successive-approximation algorithm. SAR ADC architecture Although there are many variations for implementing a SAR ADC, the basic architecture is quite simple (see Figure 1). The analog input voltage (VIN) is held on a track/hold. To implement the binary search algorithm, the N-bit register is first set to midscale (that is, 100... .00, where the MSB is set to 1). This forces the DAC output (VDAC) to be VREF/2, where VREF is the reference voltage provided to the ADC. A comparison is then performed to determine if VIN is less than, or greater than, VDAC. If VIN is greater than VDAC, the comparator output is a logic high, or 1, and the MSB of the N-bit register remains at 1. Conversely, if VIN is less than VDAC, the comparator output is a logic low and the MSB of the register is cleared to logic 0. The SAR control logic then moves to the next bit down, forces that bit high, and does another comparison. The sequence continues all the way down to the LSB. Once this is done, the conversion is complete and the N-bit digital word is available in the register.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding SAR ADCs - AN1080

Successive-approximation-register (SAR) analog-to-digital converters (ADCs) are frequently the architecture of choice for medium-to-high-resolution applications with sample rates under 5 megasamples per second (Msps). SAR ADCs most commonly range in resolution from 8 to 16 bits and provide low power consumption as well as a small form factor. This combination makes them ideal for a wide variety...

متن کامل

Understanding SAR ADCs: Their Architecture and Comparison with Other ADCs - Tutorial - Maxim

Successive-approximation-register (SAR) analog-to-digital converters (ADCs) represent the majority of the ADC market for mediumto high-resolution ADCs. SAR ADCs provide up to 5Msps sampling rates with resolutions from 8 to 18 bits. The SAR architecture allows for high-performance, lowpower ADCs to be packaged in small form factors for today's demanding applications. This paper will explain how ...

متن کامل

Pipeline and SAR ADCs for Advanced Nodes

The energy efficiency of ADCs has improved by orders of magnitude over the past two decades. Even though process scaling degrades the analog characteristics of transistors, by exploiting, scaling the energy efficiency of recently reported ADCs is approaching fundamental limits [1]. These improvements have been achieved through innovative circuit ideas and through the evolution of ADC architectu...

متن کامل

ISSCC 2009 / SESSION 4 / HIGH - SPEED DATA CONVERTERS / 4 . 4 4 . 4 A 5 b 800 MS / s 2 mW Asynchronous Binary - Search ADC in 65 nm CMOS

Digital wireless communication applications such as UWB and WPAN necessitate low-power high-speed ADCs to convert RF/IF signals into digital form for subsequent baseband processing. Considering latency and conversion speed, flash ADCs are often the most preferred option. Generally, flash ADCs suffer from high power consumption and large area overhead. On the contrary, SAR ADCs have low power di...

متن کامل

Mismatch-Immune Successive- Approximation Techniques for Nanometer CMOS ADCs

During the past decade, SAR ADCs have enjoyed increasing prominence due to their inherently scaling-friendly architecture. Several recent SAR ADC innovations focus on decreasing power consumption, mitigating thermal noise, and improving bandwidth, however most of those using non-hybrid architectures are limited to moderate (8-10 bit) resolution. Assuming a nearly rail-to-rail dynamic range, com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010